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Abstract. The frequency shift and linewidth variation of an atomic oscillator placed next to a prolate
dielectric or metal spheroid are found within the framework of the classical approach. Both the frequency
shift and linewidth are shown to be substantially dependent on the location of the atom and the form
of the nanospheroid and capable of reaching very high values near the surface of the nanospheroid under
plasmon (polariton) resonance conditions. The predictions are compared with those found for spherical
and cylindrical geometries. The prolate spheroid is treated as a model of a needle tip in apertureless
optical scanning microscopy. Effects of sharpness of interaction between the nanospheroid tip and atoms
are considered.

PACS. 42.50.-p Quantum optics – 34.50.Dy Interactions of atoms and molecules with surfaces; photon and
electron emission; neutralization of ions – 78.67.-n Optical properties of nanoscale materials and structures

1 Introduction

Nanooptics, i.e., optics on a space scale (in one-, two-,
or three-dimensional space) much smaller than the op-
tical wavelength λ is a promising avenue of inquiry in
nanoscience and technology. Investigations in the field of
nanooptics can be arbitrarily subdivided into three inter-
related areas:

(1) localization of light on a nanoscale with a view to
attaining an ultrahigh spatial resolution (microscopy,
optical memory etc.), specifically in near-field op-
tics [1,2];

(2) localization of atoms on a nanoscale by means of light
(atom nanooptics [2–4]);

(3) variation of the spectral characteristics of quantum-
mechanical systems (atoms, molecules, ions) inside
and in the vicinity of nanobodies.

The roots of the latter line of investigation probably
lie in the work of Purcell [5], who was the first to dis-
cuss the change of the spontaneous emission probability
of an atom placed inside a resonator. This question was
later studied in detail in works using micro-cavities and
came to be known as Cavity QED [6,7]. Within the frame-
work of this line, they analyzed radiation processes in the
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neighborhood of a wide variety of material bodies whose
dimensions are larger than or comparable with the radia-
tion wavelength. A number of works in the literature have
been devoted to the studies of the spectroscopic charac-
teristics of an excited atom near a plane interface [8–12].

The spectroscopy of an atom placed both inside and
outside a dielectric sphere was considered in [13–16]. In
that case, there can occur substantial changes in the spec-
troscopic properties, because resonance modes (whisper-
ing gallery modes [17–19]) can be excited in such spheres.
The influence of ideally conducting and dielectric cylin-
ders on the radiation properties of an atom was examined
in [20–23]. The cone geometry was considered in [24]. In all
these works, the primary emphasis was on the case where
the size of the considered body was large in comparison
with the radiation wavelength.

However, the spectroscopic properties of atoms also
vary greatly in the case of nanobodies, i.e., bodies of size
much smaller than the radiation wavelength λ. In that
case, no resonance modes similar to whispering gallery
modes are excited, and the effect of the nanobodies is due
to entirely different factors.

First of all, one should note the effect of the surface
curvature giving rise to large field gradients. For exam-
ple, it was demonstrated in [25] that when the diameter
of the dielectric nanosphere is very small (2a � λ) the
probability of quadrupole transitions (which are due to
field gradients) rises in the ratio (λ/a)2 (see discussion
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in [26]) compared to that in the case of free space. The
same enhancement of quadrupole transitions also occurs
in the case of cylindrical geometry [23].

Secondly, in metal nanobodies, 3-D plasmon (polari-
ton) resonances can be excited, which substantially in-
crease transition probabilities. For example, in the case
of ideally conducting nanocylinder, the dipole transition
probability grows higher in the ratio (λ/a)2 [23]. In the
case of plasmon resonance in a sphere, there can occur a
transition increase of the order of (λ/a)4 [27]. It is quite
possible that the enormous fluorescence enhancement ob-
served in [28] to take place in the presence of golden
nanorods was also associated with the excitation of plas-
mon resonances.

Therefore, the question naturally arises as to the con-
sideration of the spontaneous emission of an atom in the
vicinity of a prolate nanospheroid (dielectric or metallic).
First, this case is intermediary between the ideal cases of
nanosphere [15,16] and nanocylinder [23]. Secondly, the
sharp tip of such a prolate nanospheroid is a natural sim-
ple model of the needle tip used in scanning aperture-
less microscopy [1] whose interferometric version is capa-
ble of ensuring a spatial resolution as high as 1 nm [29].
This is also important in scanning near-field resonance en-
ergy transfer (FRET) microscopy using an active probe
(exciton-type [30], or fixed excited-atom-type [31]). All
these considerations are important motivations for the
present work.

Here we consider, within the framework of the per-
turbation approach, the spectroscopic characteristics of a
classical oscillator located outside of a prolate dielectric
or metallic nanospheroid. It is well-known that the clas-
sical analysis in this case yields the same results as the
quantum-mechanical one [32]. The analytical solution of
the Maxwell equations for a dipole placed on the axis of an
ideally conducting spheroid is well-known [33]. However,
the analysis of this solution is rather complicated because
of the presence of spheroidal functions. The case of di-
electric spheroid is even more complicated. At present,
the only known solution is that of the problem of plane-
wave diffraction by a dielectric spheroid [34,35]. As far
as we know, the analytical solution of the problem of
atomic emission near a dielectric spheroid still remains
to be found. In this connection, to obtain demonstrative
analytical results, we restrict ourselves to the case of pro-
late nanospheroid. The name nanospheroid is used here in
reference to any spheroid with a characteristic size much
smaller than the radiation wavelength. We also assume
that the distance between the atom and the nanospheroid
is much less than the radiation wavelength and that the
permittivity of a nanospheroid is independent of frequency
(ideal dielectric). Such an approach is of importance from
the experimental point of view and allows us to obtain
demonstrative analytical results.

The structure of the rest of the paper is as follows. In
Section 2 we present general expressions for the variation
of the decay rate and frequency shift of an atom placed
near any body and simplify them for the case of nanobod-
ies, where one can use quasistatic approximations.

In Section 3, the quasistatic fields near a prolate
nanospheroid are derived. Using these fields, we find gen-
eral expressions for the decay rates and frequency shifts of
an atom placed near a nanospheroid. In Section 4, we an-
alyze the results obtained in Section 3 for the decay rates
and compare them with those occurring near a sphere
and a cylinder. In this section, we also apply the atom–
nanospheroid system to simulate the operation of an aper-
tureless scanning microscope. And finally in Section 5, we
analyze the frequency shifts of a dipole in the vicinity of
a dielectric and a metal nanospheroid.

2 Linewidth and frequency shift of an atomic
oscillator in the presence of an arbitrary body

So, let us consider a linear (1-D) oscillator located in vac-
uum at the point r′ near an arbitrary body, having a per-
mittivity ε. In the classical approach, the change in the
emission characteristics is associated with the radiation
reaction [36]. If the atom is treated as a nonrelativistic os-
cillator consisting of a stationary charge−e and a charge e
oscillating about it, the equation of motion of the latter
in the absence of any body has the form

mδr̈ =
2e2

3c3
δ
...
r −mω2

0δr (1)

or, in the case of weak radiation reaction,

mδr̈ +mγ0δṙ +mω2
0δr = 0. (2)

Here δr is the radius vector of the oscillating charge, mea-
sured from stationary charge, ω0 is the frequency of free
oscillations, and

γ0 =
2e2

3c3
ω2

0

m
(3)

is the total linewidth in vacuum, m is the electron mass,
and c is the velocity of light in vacuum.

If the oscillator is located at the point r′ in the vicinity
of a body, it is acted upon by an additional reflected field
E(R)(r′), so that its equation of motion takes the form

mδr̈ +mγ0δṙ +mω2
0δr = eE(R)(r′ + δr, t) ≈ eE(R)(r′, t)

md̈ +mγ0ḋ +mω2
0d = e2E(R)(r′, t) (4)

where d = eδr is the electric dipole momentum of the
atomic transition. Projecting this equation onto the oscil-
lation direction, we get:

md̈+mγ0ḋ+mω2
0d = e2 d0E(R)(r′, t)

d0
(5)

where d0 is the dipole oscillation vector amplitude.
Assuming that all the quantities involved are propor-

tional to exp(−iωt), we obtain the dispersion equation
defining the line characteristics in the presence of the
body:

ω2 + iωγ0 − ω2
0 +

e2

md2
0

d0E(R)(r′, ω) = 0. (6)
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When the corrections to the free-space oscillation fre-
quency and oscillator linewidth are small in comparison
with the characteristic frequency scale, the solution of this
equation may be obtained in a perturbative approach:

ω = ω0 −
i
2
γ0 −

e2

2mω0

d0E(R)(r′, ω0)
d2

0

· (7)

Separating the real and imaginary parts of this expression
and using expression (3) for the linewidth in the vacuum
free space, we obtain in this approximation the following
formula for the linewidth change (see, for example, [6,36]):

γ

γ0
= 1 +

3
2

Im
d0E(R)(r′, ω0)

d2
0k

3
0

(8)

and for the frequency shift:

ω − ω0

γ0
= −3

4
Re

d0E(R)(r′, ω0)
d2

0k
3
0

· (9)

Here and elsewhere, k0 = ω0/c and k = ω/c stand for the
wave vectors in free space.

So, to obtain concrete results, it is sufficient to cal-
culate the reflected field d0E(R)(r′, ω) at the location of
the atom. The reflected field is determined by solving the
Maxwell equation with the dipole source. It is also pos-
sible to calculate the radiative linewidth in a direct way.
To do so, one should calculate the energy flow from the
oscillator to infinity and normalize it to the energy flow
from the free oscillator:

γ

γ0
=

∫ ∣∣(E(0) + E(R)
)
×
(
H(0) + H(R)

)∣∣2
r→∞ dΩ∫ ∣∣(E(0)

)
×
(
H(0)

)∣∣2
r→∞ dΩ

· (10)

The classical expressions (8, 9) are valid for any body
permittivities, including complex ones. In the case of real
permittivity, one can show the equivalence of the classical
and quantum-mechanical perturbation approaches for the
decay rates [6,7,32]. Using the recent approaches to the
quantization of electromagnetic fields in media with losses
and dispersion, one can also show the equivalence of clas-
sical and quantum-mechanical perturbation approaches in
the case of complex permittivity [37,38].

Expressions (8, 9) are useful where the solution of the
classical dipole emission problem is known. In our case,
no such solution is known. However, in the case of bodies
(nanobodies) whose size is small in comparison with the
radiation wavelength, it possible to build the perturbation
theory in terms of the wave vector k [39], or, more exactly,
in terms of the ratio between the characteristic size a of
the body and the wavelength λ, i.e., ka� 1.

In this case, it is possible to expand the expression for
the reflected field d0E(R)(r′, ω) governing both the fre-
quency shift and the change of the decay rate in a power
series of k:

d0E(R)(r′, ω0)
d2

0

= a1 + b1k + c1k
2 + id1k

3 + ... (11)

where the coefficients a1, b1, c1, and d1 are determined by
solving some quasistatic problems [39].

It is important to note that the first three terms are
due to near fields, while radiation fields appear only start-
ing with the fourth term, which is proportional to k3.

In the case of loss-free nanobody, the coefficients a1,
b1, c1, and d1 appear to be real, and the expressions for
the frequency shift and decay rate variations have the fol-
lowing form for k > 0:

γ

γ0
= 1 +

3
2
d1 + ... (12)

ω − ω0

γ0
= −3

4
a1 + b1k + c1k

2

k3
+ ... (13)

To find concrete expressions for the coefficients a1, b1, c1,
and d1, one should solve a sequence of quasistatic prob-
lems. The coefficient a1 is determined by solving the static
problem on the dipole near the nanobody. This allows us
to find the leading term of frequency shift (13). The rest
of the coefficients are determined by solving more com-
plicated quasistatic problems. However, to find the coeffi-
cient d1 describing radiative decay rate (12), one can use
expression (10).

In the case of nanobodies of interest to us, radiation is
a dipole-type, and so expression (10) reduces to the ratio
between the square of the total dipole momentum and the
square of the dipole momentum of the atomic oscillator:

γ

γ0
=
|dtot|2
|d0|2

· (14)

Here dtot is the total dipole momentum of the atom
+ nanobody system. By comparing between expres-
sions (12, 14), one can easily find the following expression
for the coefficient d1:

d1 =
2
3

(
|dtot|2
|d0|2

− 1
)
. (15)

So, to describe the decay rate and frequency shift vari-
ations occurring in the presence of any nanobody, it is
sufficient to solve the static problem on a dipole near the
nanobody. The total dipole momentum thus found will al-
low one to find, according to (14), the decay rate, while
the reflected field will make it possible to find, according
to (13), the frequency shift.

In the case of medium with losses, all of the coefficients
a1, b1, c1, and d1 are complex. This fact causes no qual-
itative changes in the frequency shift, but the decay rate
changes substantially. In this case, the decay rate is gov-
erned by all its first terms, rather than the fourth term d1

in expression (11):

γ

γ0
= 1 +

3
2

Im
(a1

k3
+ ...

)
+

3
2

Re(d1) + ... (16)

ω − ω0

γ0
= −3

4
Re
(a1

k3
+ ...

)
. (17)

Such a change in the decay rate has a simple physical
explanation. In the case of medium with losses, the en-
ergy of the oscillator is emitted into the outer space,
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Fig. 1. Geometry of the problem: (a) atom near the ver-
tex of the nanospheroid; (b) atom near the equator of the
nanospheroid. The arrows show the possible orientations of the
dipole momentum of an atom along the coordinate lines of
the prolate spheroid coordinate system.

as well as dissipated into the nanobody. Let us stress that
expression (16) for the decay rate describes all the losses
of energy, while the rate of radiative losses is described by

γ

γ0
=
|dtot|2
|d0|2

=
∣∣∣∣1 +

3
2
d1

∣∣∣∣ (18)

in any case.
In the present paper, we calculate the leading terms

for the frequency shift (a1) and for the decay rate vari-
ation (a1, d1) in the presence of a prolate spheroid with
a complex permittivity. The geometry of the problem is
presented in Figure 1.

3 An atom near a prolate nanospheroid

In this section, we will consider the case of a prolate
spheroid whose size is small in comparison with the radia-
tion wavelength. We assume also that the atom is located
in close vicinity of the nanospheroid. The geometry of the
problem is presented in Figure 1. According to Section 2
(Eqs. (17, 18)), the decay rate can in that case be found
from the total dipole momentum and the frequency shift
from the reflected field.

3.1 Solution of the quasistationary problem

To find the total dipole momentum and the reflected field,
one should solve the classical quasistatic problem

rotE = 0
divD = 4πρ (19)

Fig. 2. Coordinate system of a prolate spheroid. Hachure in-
dicates the nanospheroid under consideration (ξ = ξ0).

where the charge density is defined by the usual expression

ρ = − (d0∇′) δ(3) (r− r′) e−iωt (20)

where δ is the three-dimensional Dirac delta function and
∇′ means gradient over radius vector of the atom, r′.

Hereafter we will omit the time dependence of the
fields. Introducing the potential ϕ̃

E = −∇(d0∇′)ϕ̃(r, r′), (21)

we obtain, instead of expression (19),{
−∇2ϕ̃ = 4πδ(3)(r− r′), outside spheroid,

−∇2ϕ̃ = 0, inside spheroid.
(22)

The continuity conditions for the tangential components
of E and the normal components of D should be provided
as well.

It is convenient to represent the solution of prob-
lem (22) in the form{

ϕ̃ = ϕ0 + ϕ2, outside spheroid

ϕ̃ = ϕ1, inside spheroid
(23)

where ϕ0 is the free-space potential given by

ϕ0 =
1

|r− r′| · (24)

When solving electrostatic problem (22–24) for a prolate
spheroid, it is quite natural to take its axis to be the z-axis
of its coordinate system (see Fig. 2) [40]. The coordinate
surfaces of this coordinate system (ξ ≥ 1 ≥ η ≥ −1,
0 ≤ ψ ≤ 2π) consist of oblong ellipsoids of revolution,

x2 + y2

f2(ξ2 − 1)
+

z2

f2ξ2
= 1, (25)
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two-sheet hyperboloids of revolution,

x2 + y2

f2(η2 − 1)
+

z2

f2η2
= 1, (26)

and planes,

y = x tanψ. (27)

In equations (25, 26) and further, 2f is the distance be-
tween foci.

The ellipsoid of revolution with ξ = ξ0 describes the
nanospheroid under consideration.

The Cartesian coordinates are related to prolate
spheroidal coordinates by the following relation:

x = f
√

(1− η2)(ξ2 − 1) cosψ,

y = f
√

(1− η2)(ξ2 − 1) sinψ,
z = fξη. (28)

The metric coefficients for the prolate spheroidal coordi-
nates are as follows:

gξ = f

√
(ξ2 − η2)
(ξ2 − 1)

,

gη = f

√
(ξ2 − η2)
(1− η2)

,

gψ = f
√

(1− η2)(ξ2 − 1). (29)

The Green functions of free space (24) are given by [40]

ϕ0 =
1

|r− r′|

=
1
f

∞∑
n=0

n∑
m=0

(2− δm0)(−1)m(2n+ 1)
[

(n−m)!
(n+m)!

]2

× Pmn (η)Pmn (η′) cosm(ψ − ψ′)

×
{
Pmn (ξ)Qmn (ξ′), ξ < ξ′

Pmn (ξ′)Qmn (ξ), ξ > ξ′
· (30)

In expression (30) and elsewhere, the letters P and Q
stand for the associated Legendre functions of first and
second kind [41]. Here the functions of η are defined on
the interval −1 < η < 1, while those of ξ > 1 have branch
cut from minus infinity to 1.

It is convenient to represent (30) in the form

ϕ<0 =
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Pmn (ξ)

×
[
α0,<
nm cosmψ + β0,<

nm sinmψ
]
, ξ < ξ′

ϕ>0 =
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Qmn (ξ)

×
[
α0,>
nm cosmψ + β0,>

nm sinmψ
]
, ξ > ξ′ (31)

where the coefficients α0 and β0 are given by{
α0,<
nm

β0,<
nm

}
= (2− δm0)(−1)m(2n+ 1)

[
(n−m)!
(n+m)!

]2

× Pmn (η′)Qmn (ξ′)
{

cosmψ′

sinmψ′

}
, (32)

{
α0,>
nm

β0,>
nm

}
= (2− δm0)(−1)m(2n+ 1)

[
(n−m)!
(n+m)!

]2

× Pmn (η′)Pmn (ξ′)
{

cosmψ′

sinmψ′

}
· (33)

We will seek the solution of problem (22–24) in the region
ξ0 < ξ < ξ′ (between the surface of the spheroid and the
dipole) in the form

ϕ̃ =
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Pmn (ξ)
[
α0,<
nm cosmψ + β0,<

nm sinmψ
]

+
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Qmn (ξ)
[
α(2)
nm cosmψ + β(2)

nm sinmψ
]

(34)

and in the region 1 < ξ < ξ0 (inside the spheroid) in the
form

ϕ̃ =
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Pmn (ξ)

×
[
α(1)
nm cosmψ + β(1)

nm sinmψ
]

(35)

where α
(1)
nm, β(1)

nm, α(2)
nm, β(2)

nm are the coefficients to be
found.

The continuity conditions for the tangential compo-
nents of E and the normal components of D on the surface
of the nanospheroid under consideration (ξ = ξ0) yield the
following system of equations

α(1)
nmP

m
n (ξ0)− α(2)

nmQ
m
n (ξ0) = α0,<

nmP
m
n (ξ0),

εα(1)
nm

d
dξ0

Pmn (ξ0)− α(2)
nm

d
dξ0

Qmn (ξ0) = α0,<
nm

d
dξ0

Pmn (ξ0).

(36)

A similar system is also valid for the coefficients β.
The solution of system (36) is

α(2)
nm =

(ε− 1)Pmn (ξ0)
d

dξ0
Pmn (ξ0)

Pmn (ξ0)
d

dξ0
Qmn (ξ0)− εQmn (ξ0)

d
dξ0

Pmn (ξ0)
α0,<
nm

= Gnmα
0,<
nm ,

β(2)
nm = Gnmβ

0,<
nm . (37)

It is important to note that expressions (37) do not exist
for some real negative values of permittivity, and so the
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solution of the quasistatic problem is also nonexistent [42].
In that case, as well as in the case of dielectric sphere [42],
there appears a polariton (or plasmon) resonance. This
situation can be described within the framework of a fully
electrodynamic approach. Nevertheless, it is obvious that
such conditions result in a substantial increase of the decay
rates, as in the case with the sphere [27]. We will analyse
this effect in the next section.

In the case of ideally conducting spheroid (i.e., one
with ε→∞), one should use in (37) the following expres-
sion instead of Gnm:

Gideal
nm = −P

m
n (ξ0)
Qmn (ξ0)

· (38)

Now, taking into account expressions (31, 34), we can
write the dipole potential in the region ξ > ξ′ in the form

ϕ̃ =
1
f

∞∑
n=0

n∑
m=0

Pmn (η)Qmn (ξ)
[
(α0,>
nm +Gnmα

0,<
nm) cosmψ

+(β0,>
nm +Gnmβ

0,<
nm ) sinmψ

]
. (39)

Using expressions (12, 13), one can find from (39) both the
reflected field, to determine the frequency shift of interest,
and the total dipole momentum, to find the decay rate.

3.2 General expression for radiative decay rates

To determine the total dipole momentum, one should find
the asymptote of (39) in the far field, that is, for ξ →∞.
One can see that the main contribution is due to the terms
with n = 0 and n = 1 (dipole radiation). Using the fact
that in the far field ξ ≈ R/f , η ≈ cos θ, (R, θ, ψ are spher-
ical coordinates), and that the asymptotes of Legendre
functions are

Q1(ξ) =
ξ

2
ln
ξ + 1
ξ − 1

− 1 ∼= 1
3ξ2

Q1
1(ξ) =

√
ξ2 − 1

dQ1(ξ)
dξ

∼= − 2
3ξ2

(40)

we obtain the following asymptote (ξ → ∞) for the po-
tential of a unit charge (39) in the presence of a prolate
spheroid:

ϕ̃ ∼= 1
R

+
f

R2


P1(η′)P1(ξ′)

(
1 +G10

Q1(ξ′)
P1(ξ′)

)
cos θ

+P 1
1 (η′)P 1

1 (ξ′)
(

1 +G11
Q1

1(ξ′)
P 1

1 (ξ′)

)
× sin θ cos(ψ − ψ′)

 ·
(41)

Accordingly, for the dipole potential, we have

ϕ = (d0∇′)ϕ̃. (42)

Comparing the differentiation result with the well-known
dipole potential

ϕdip =
(dtotR)
R3

, (43)

one can find the total dipole momentum of the oscilla-
tor + spheroid system. Without any loss of generality, we
assume that the dipole is placed at ψ′ = 0 (cylindrical
symmetry).

For the ξ-orientation of the dipole, that is for the ori-
entation which is normal to the ellipsoid defined by equa-
tion (25) with ξ = const (see Fig. 1), the potential at large
separations is given by (ψ′ = 0)

ϕ> ∼= d0,ξ′

gξ′

∂

∂ξ′
ϕ̃> =

d0,ξ′

R2

√
(ξ′2 − 1)

(ξ′2 − η′2)

×


η′
(

1 +G10
d

dξ′
(Q1(ξ′))

)
cos θ

+
√

1 + η′2

(
ξ′√
ξ′2 − 1

+G11
d

dξ′
(Q1

1(ξ′))

)
× sin θ cosψ

 · (44)

One can find from (44) the Cartesian components of the
total dipole momentum:

dtot,z = d0,ξ′

√
(ξ′2 − 1)

(ξ′2 − η′2)
η′
(

1 +G10
d

dξ′
Q1(ξ′)

)
,

dtot,x = d0,ξ′

√
(ξ′2 − 1)
(ξ′2 − η′2

)
√

1− η′2

×
(

ξ′√
ξ′2 − 1

+G11
d

dξ′
Q1

1(ξ′)

)
. (45)

Taking into account the fact that the first terms in (45)
are due to the free oscillator, we find with the help of (18)
the radiative decay rate for the ξ-orientation of the dipole
momentum of the oscillator (d2

0,z + d2
0,x = d2

0,ξ′):

(
γ

γ0

)
ξ

=
|dtot,z|2 + |dtot,x|2

d2
0,z + d2

0,x

=
(ξ′2 − 1)

(ξ′2 − η′2)

[
η′

2
(

1 +G10
d

dξ′
Q1(ξ′)

)2

+(1− η′2)

(
ξ′√
ξ′2 − 1

+G11
d

dξ′
Q1

1(ξ′)

)2
 .
(46)

The decay rates for the η- and ψ-orientations of the dipole
momentum, that is for the orientations which are normal
to hyperboloids (Eq. (26)) and planes (Eq. (27)) (see also
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Fig. 1), can be obtained in the same way:

(
γ

γ0

)
η

=

η′2(ξ′2 − 1)

∣∣∣∣∣1 +G11
Q1

1(ξ′)√
ξ′2 − 1

∣∣∣∣∣
2

(ξ′2 − η′2)

+

(1− η′2)ξ′2
∣∣∣∣∣1 +G10

Q1(ξ′)
ξ′

∣∣∣∣∣
2

(ξ′2 − η′2)
, (47)

(
γ

γ0

)
ψ

=

∣∣∣∣∣1 +G11
Q1

1(ξ′)√
ξ′2 − 1

∣∣∣∣∣
2

· (48)

The coefficients G10 and G11 are defined by expres-
sion (37), and for specific indices, they take on the fol-
lowing form:

G10 =
(ε− 1)ξ0

ξ0
d

dξ0
Q1(ξ0)− εQ1(ξ0)

, (49)

G11 =
(ε− 1)ξ0√

ξ2
0 − 1

d
dξ0

Q1
1(ξ0)− εξ0

d
dξ0

Q1(ξ0)
· (50)

It is worthy to note that expressions (46–48) describe only
radiative decay rates which are not equal to the total decay
rate in the case of spheroid with internal losses (with a
complex permittivity).

In the case of ideally conducting spheroid, we have the
following expressions instead of (49, 50):

G10 = − ξ0
Q1(ξ0)

; G11 = − 1
dQ1(ξ0)/dξ0

· (51)

The results are substantially simplified when the distance
between an atom and a spheroid is much larger than the
spheroid size but still remains much less than the wave-
length, i.e. one can limit the multipole expansion of the
field of the atomic dipole to the first term. It corresponds
to the ξ′ →∞ regime in the preceding formulae. By sub-
stituting the expansion of (41) over 1/ξ′ into (42), it is
possible to find with the help of (43) the expression for
the total dipole momentum of the system

dtot,i = d0,i + P sph
ij Mjkd0,k (52)

where the indices i, j, k = 1...3 correspond to Cartesian
co-ordinates and P sph and M tensors have the following
form

P sph
ij =

f3

3

2G11 0 0

0 2G11 0

0 0 −G10


i,j

Mij = − δij
r′3

+ 3
r′ir
′
j

r′5
·

Naturally, the expression (52) coincides with the expres-
sion for the total dipole momentum of the system, con-
sisting of the atomic dipole and the point-like, induced

dipole of the nanospheroid, with P sph as polarizability ten-
sor. Note, that Mjkd0,k is the electric field of the atomic
dipole at the nanospheroid position. This coincidence con-
firms the correctness of our calculations. Substituting (52)
into (18) it is possible to find the decay rates for arbitrary
relative orientation of the atom dipole momentum and the
spheroid axis.

3.3 General expression for frequency shifts

Let us now consider the frequency shift. According to
expression (17), the frequency shift is governed by the
reflected field d0E(R)(r, ω0) that can be found from ex-
pressions (21, 39):

d0E(R)(r, ω) = −(d0∇)(d0∇′)ϕ̃R(r, r′) (53)

ϕ̃R(r, r′) =
∞∑
n=0

n∑
m=0

Pmn (η)Qmn (ξ)Gnm[α0,<
nm (r′) cosmψ

+ β0,<
nm (r′) sinmψ], ξ > ξ′. (54)

Expression (53) describes the term a1 in expansion (11).
Let us now consider the ξ-orientation of the dipole mo-

mentum of the oscillator. From expressions (53, 54) we get

d0E(R)(r′, ω0) =

− dξdξ′

gξgξ′

∞∑
n=0

n∑
m=0

Pmn (η)
d
dξ
Qmn (ξ)Gnm

[
d

dξ′
α0,<
nm (r′)

]
.

(55)

Now, putting ξ = ξ′, η = η′, ψ = ψ′ = 0 in expression (55)
to find the reflected field at the dipole position and using
equation (9), we obtain the final expression for the fre-
quency shift of an oscillator with the ξ-orientation of its
dipole momentum:(
∆ω

γ0

)
ξ

=

3
4(k0f)3

(ξ′2 − 1)
(ξ′2 − η′2)

∞∑
n=1

n∑
m=0

(2− δm0)(−1)m(2n+ 1)

×Re(Gnm)
(

(n−m)!
(n+m)!

Pmn (η′)
d
dξ
Qmn (ξ′)

)2

. (56)

Expressions for the frequency shifts in the case of η- and
ψ-orientations can be obtained in the same way:(
∆ω

γ0

)
η

=
3

4d2
ηk

3
0

dηdη′

gηgη′

d2

dηdη′
ϕ̃>,R(r, r′)

∣∣∣∣
r=r′

=

3
4(k0f)3

(1− η′2)
(ξ′2 − η′2)

∞∑
n=1

n∑
m=0

(2− δm0)(−1)m(2n+ 1)

×Re(Gnm)
(

(n−m)!
(n+m)!

Qmn (ξ)
d
dη
Pmn (η)

)2

, (57)
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∆ω

γ0

)
ψ

=
3

4d2
ψk

3
0

dψdψ′

gψgψ′

d2

dψdψ′
ϕ̃>,R(r, r′)

∣∣∣∣
r=r′

=

3
4(k0f)3

1
(1− η′2)(ξ′2 − 1)

∞∑
n=1

n∑
m=0

(2− δm0)(−1)m(2n+ 1)

×Gnm
(
m

(n−m)!
(n+m)!

Qmn (ξ)Pmn (η)
)2

. (58)

Expressions (46–48) for the radiative decay rates
and (56–58) for the frequency shifts occurring in the pres-
ence of a prolate nanospheroid are the main result of this
paper and can be applied to a number of situations of
practical interest.

As already mentioned in the preceding section, expres-
sions (46–48) and (56–58) are the leading terms of the ex-
pansions of the near and the far field in the quasistatic
approximation. One should take this fact into account in
the case of spheroid with internal losses, where the near
fields contribute to the total decay rate. Substituting ex-
pression (38) into (56–58), one arrives at the case of ideally
conducting spheroid

4 Decay rates in particular cases

The results obtained in the preceding section are rather
general and complicated. It is worth considering some par-
ticular cases. The following cases are of interest from the
physical point of view:

(a) an atom on the axis of a spheroid (η = 1) (see Fig. 1a,
needle tip model);

(b) an atom near the equator of a spheroid (η = 0) (see
Fig. 1b);

(c) a sphere limit (ξ0 =∞);
(d) a needle limit (ξ0 = 1);
(e) an ideally conducting spheroid.

Throughout this section, all primes on the oscillator
location coordinates will be dropped with no misunder-
standing being caused.

4.1 Radiative decay of an atom

General expressions (46–48) are greatly simplified in the
case of atom on the axis of a spheroid (η = 1):

(
γ

γ0

)
ξ,η=1

=
∣∣∣∣1 +G10

d
dξ
Q1(ξ)

∣∣∣∣2 , (59)(
γ

γ0

)
η,η=1

=
(
γ

γ0

)
ψ,η=1

=
∣∣∣∣1 +G11

d
dξ
Q1(ξ)

∣∣∣∣2 . (60)

Accordingly, in the case of atom near the equator of a
spheroid (η = 0), we have(

γ

γ0

)
ξ,η=0

=

∣∣∣∣∣1 +G11

√
ξ2 − 1
ξ

d
dξ
Q1

1(ξ)

∣∣∣∣∣
2

, (61)

(
γ

γ0

)
η,η=0

=
∣∣∣∣1 +G10

Q1(ξ)
ξ

∣∣∣∣2 , (62)(
γ

γ0

)
ψ,η=0

=
∣∣∣∣1 +G11

d
dξ
Q1(ξ)

∣∣∣∣2 . (63)

The most interesting feature of the decay rate of a ψ-
oriented dipole is its independence of the η-coordinate.

Further simplification can be achieved if one considers
the case where the atom is located in close vicinity of
the spheroid surface (ξ → ξ0). In that case, one can get,
instead of (59–63), the following expressions for an atom
located near the tip of a prolate spheroid (η = 1):(

γ

γ0

)
ξ,η=1

=∣∣∣∣∣∣ 2ε(
ξ0(ε− 1)(ξ2

0 − 1) ln ξ0+1
ξ0−1 + 2(ε+ ξ2

0 − ξ2
0ε)
)
∣∣∣∣∣∣
2

(64)

(
γ

γ0

)
η,η=1

=
(
γ

γ0

)
ψ,η=1

=

∣∣∣∣∣∣ 4(
ξ0(ε− 1)(ξ2

0 − 1) ln ξ0+1
ξ0−1 + 2(ξ2

0 − ξ2
0ε− 2)

)
∣∣∣∣∣∣
2

(65)

and for an atom near the spheroid equator (η = 0):(
γ

γ0

)
ξ,η=0

=∣∣∣∣∣∣ 4ε(
ξ0(ε− 1)(ξ2

0 − 1) ln ξ0+1
ξ0−1 + 2(ξ2

0 − ξ2
0ε− 2)

)
∣∣∣∣∣∣
2

(66)

(
γ

γ0

)
η,η=0

=∣∣∣∣∣∣ 2(
ξ0(ε− 1)(ξ2

0 − 1) ln ξ0+1
ξ0−1 + 2(ε+ ξ2

0 − ξ2
0ε)
)
∣∣∣∣∣∣
2

(67)

(
γ

γ0

)
ψ,η=0

=∣∣∣∣∣∣ 4(
ξ0(ε− 1)(ξ2

0 − 1) ln ξ0+1
ξ0−1 + 2(ξ2

0 − ξ2
0ε− 2)

)
∣∣∣∣∣∣
2

·

(68)

Analyzing these expressions, one can find the following
regularity that holds true for spheroids of any shape: the
ξ-decay rate near the pole, (64), exceeds the η-decay rate
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Table 1. Relative radiative decay rates of an atomic oscillator placed on the surface of a spheroid ξ → ξ0 for various dipole
positions and orientations and for limiting spheroid shapes.

vertex (η = 1) equator (η = 0)

orientation spheroid shape dielectric ideal conductor dielectric ideal conductor

ξ sphere

����
3ε

2 + ε

����
2

9

����
3ε

2 + ε

����
2

9

needle |ε|2
��

ln 2
ξ0−1

− 2
�

(ξ0 − 1)
�−2

ξ0 → 1

����
2ε

1 + ε

����
2

4

η sphere

����
3

2 + ε

����
2

0

����
3

2 + ε

����
2

0

needle

����
2

1 + ε

����
2

0 1 0

ψ sphere

����
3

2 + ε

����
2

0

����
3

2 + ε

����
2

0

needle

����
2

1 + ε

����
2

0

����
2

1 + ε

����
2

0

near the equator, (67), by a factor of ε2. Similarly, decay
rate (66) exceeds that defined by expressions (65, 68) by
a factor of ε2, too.

The above formulas (64–68) are valid for prolate
spheroids of any shape, i.e., for any ξ0. However, it is
of interest to study the linewidth behaviour in the par-
ticular cases of sphere (ξ0 → ∞) and needle (ξ0 → 1).
For the sake of clarity, it is convenient to tabulate various
asymptotes (see Tab. 1).

The analysis of this table shows that the decay rates for
the spherical limit case coincide with those obtained from
the exact solution for a dielectric sphere [15]. Of more in-
terest is comparison with the results obtained when inves-
tigating a dipole radiation near an infinite circular cylin-
der [23]. In the case of dielectric cylinder whose radius is
small in comparison with the radiation wavelength, the
decay rates coincide with those for an atom placed near
the equator of a highly prolate spheroid. Such a coinci-
dence is an additional confirmation of the correctness of
our calculations.

As to an ideally conducting cylinder, the result for a
radially-oriented dipole differs from that in the case of
spheroid (ξ-orientation). According to [23], the decay rate
for an ideally conducting cylinder of small radius tends to
infinity:(

γ

γ0

)
dip,ρ

−−−−−−→
kb=ka→0

3
2(ka)2

[
1 +

2
π

arctan(L∗)

+
4(ln 2− 1)
π2(1 + L∗2)

+ ...

]
+ 4 + ...

L∗ =
2
π

(
ln
(
ka

2

)
+ 0.5772

)
(69)

while in the case of ideally conducting needle (ξ0 → 1),
the decay rate is finite:(

γ

γ0

)
ξ

−→ 4... (70)

This difference is due to the fact that, in the case of ideally
conducting cylinder, a current wave is excited in a spatial
domain whose characteristic size is much greater than the
radiation wavelength [23]. In that case, the quasistatic ap-
proximation is not valid, and so one cannot compare be-
tween the dipole radiation of an oscillator placed near a
small spheroid and that of an oscillator near an infinite
cylinder.

The radiation of a ξ-oriented dipole located at the tip
(η = 1) of a prolate spheroid is of particular interest. As it
can be seen from Table 1, as the permittivity gets larger,
the relative decay rate increases in a square-law fashion.
In the case of ideally conducting spheroid, one can see
from the table that the decay rate increases unboundedly
as the spheroid tapers off into an infinitely thin needle
(ξ = ξ0 → 1, η = 1). This fact has a simple physical
explanation: any field in the vicinity of a sharp metal tip
is infinitely enhanced. A similar unbounded increase of the
decay rate also obtains in the case of dipole near a conical
needle tip [24].

Another interesting feature seen in Table 1 is the fact
that when the dipole is located at the equator of the
spheroid and oriented along its axis, the ideally conduct-
ing case fails to agree with the limit ε =∞.

In the remaining cases, one can change over from the
dielectric to the ideally conducting case by simply equat-
ing the permittivity to infinity. Note that in the case of
ideally conducting spheroid the decay rates for the tangen-
tial dipole orientations (ψ- and η-orientations) are always
equal to zero.

The relationships between the relative linewidth γ/γ0

and the distance (ξ − ξ0) of the atom from the surface of
dielectric nanospheroid with ε = 3, ξ0 = 1.1 and ξ0 = 3,
for various dipole orientations and atom positions with
respect to the spheroid surface are presented in Figures 3
and 4. One can see from these figures that the decay rates
for the highly prolate spheroid (Fig. 3) depend strongly
on the dipole orientation.
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Fig. 3. Relative linewidth γ/γ0 as a function of the distance
of the dipole from the surface of the spheroid for various dipole
orientations and atomic positions (ξ) in the case of dielectric
spheroid with ε = 3 and ξ0 = 1.1. Arrows indicate the position
and orientation of the dipole.

Fig. 4. Relative linewidth γ/γ0 as a function of the distance
of the dipole from the surface of the spheroid for various dipole
orientations and atomic positions (ξ) in the case of dielectric
spheroid with ε = 3 and ξ0 = 3. Arrows indicate the position
and orientation of the dipole.

As the spheroid eccentricity decreases (Fig. 4), the de-
cay rates for the ξ- and η-oriented dipoles become less de-
pendent on the η-coordinate. Another important feature
is that the decay rate for the ξ-oriented dipole always ex-
ceeds that for the η-oriented dipole.

It is clear from Figures 3 and 4 that the radiative decay
rate can be both increased (γ > γ0) and reduced (γ < γ0).
The decay enhancement effect is obtained when the dipole
orientation is perpendicular to spheroid surface, and is
more important with the dipole located near the acute
end of the spheroid. The decay suppression effect occurs
when the dipole orientation is parallel to spheroid sur-
face, and is again most pronounced with the dipole near
the acute end of the spheroid. These effects are clear man-
ifestations of the influence of surface curvature on the ra-
diative decay of an atom in the vicinity of the surface of a

Fig. 5. Relationships (71, 72) between the critical permittivity
allowing a polariton or plasmon resonance to occur and the
ratio b/a between the axes of the spheroid.

spheroid. Note that decay enhancement and suppression
can be simply interpreted via by the dipole image induced
in the nanobody, which is either parallel or antiparallel to
the atomic dipole.

4.2 Radiative and radiationless decay rates for a metal
nanospheroid

As in the case of a microsphere, there are critical val-
ues of the spheroid permittivity for which the static prob-
lem (Eqs. (22–24)) has no solution and the field inside
the spheroid undergoes a significant increase. This case
is usually referred to as a polariton or plasmon reso-
nance [42,43]. However, in contrast to the spherical case,
the critical permittivity values here depend both on the
dipole orientation and the shape of the spheroid.

Generally speaking, there are two critical values of per-
mittivity for which the plasmon resonance occur. The first
critical value is determined such that G10 becomes infinite
(see Eq. (49)):

εcrit,‖ = ξ0

d
dξ0

Q1(ξ0)

Q1(ξ0)
(71)

while the second one is determined such that G11 becomes
infinite (see Eq. (50)):

εcrit,⊥ = (ξ2
0 − 1)

d
dξ0

Q1
1(ξ0)

ξ0Q1
1(ξ0)

· (72)

The relations (71, 72), as functions of the the ratio b/a =√
(ξ2

0 − 1)/ξ0 between the spheroid axes, are shown in Fig-
ure 5. One can see from this figure that εcrit,‖ and εcrit,⊥
vary from −∞ to −2 and from −1 to −2 respectively, as
the nanospheroid is transformed from needle-like to spher-
ical shape.
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Fig. 6. Relative decay rates (in logarithmic scale) as a function
of the ratio b/a between the axes of spheroids made of gold
(Au: ε = −8.37 + i1.16, λ = 600 nm [44]) and silver (Ag:
ε = −15.37 + i0.231 [45], λ = 632.8 nm). The dipole is parallel
to the major axis of the spheroid.

It is interesting to note, that the situation is simpli-
fied for two particular atom positions (on the axis and on
the equator). In this case there is only one critical value
of permittivity, (71) or (72), when the dipole is oriented
along the major axis of the spheroid or perpendicularly
to it.

In Figure 6, the radiative decay rates of an oscillator
oriented along the major axis of a spheroid made of silver
(Ag: ε = −15.37 + i0.231, λ = 632.8 nm [44]) or gold (Au:
ε = −8.37+i1.16, λ = 600 nm [45]) are shown as a function
of the ratio b/a. It is evident from the figure that there
takes place a dramatic enhancement of the decay rates for
the silver spheroid with b/a = 0.213 (ξ0 = 1.0236) and
for the gold spheroid with b/a = 0.325 (ξ0 = 1.057). This
enhancement agrees qualitatively with the experimental
results obtained in [28], where fluorescence was found to
increase substantially in the presence of golden nanorods.

It should be noted that the above substantial enhance-
ment of the radiative decay rates should be regarded as
the first estimation only. Firstly, the quasistatic approxi-
mation we used may not be applicable here. Indeed, the
quasistatic approximation is valid only if ka� 1 and per-
mittivity ε is far from critical value, (ka)2 � |ε − εcrit|.
Fortunately, in our case, the minimal value of |ε− εcrit| is
equal to imaginary part of permittivity ε′′, |ε−εcrit| ≈ |ε′′|.
As a result the quasistatic approximation will be valid
even in the case of silver, because the additional condition
(ka)2 � |ε′′| ≈ 0.23 can be easily fulfilled. Secondly, even
when the quasistatic approximation is valid, this substan-
tial enhancement (by factor 106 for Ag) is questionable,
because the main perturbative formula (8) is valid if the
decay rates are small in comparison with the radiation
frequency and other characteristic frequencies (resonance
width etc.). For E1-allowed transition the enhancement by
factor 106 gives a decay rate comparable with the radia-
tion frequency and one should consider higher orders of
perturbation theory.

Fig. 7. Relative radiative and radiationless decay rates as a
function of the distance between a ξ- or η-oriented dipole and
the surface of a silver spheroid (Ag: ε = −15.37 + i0.231, λ =
632.8 nm) in the case of plasmon resonance (ξ0 = 1.0236). The
dipole is located at the vertex of the spheroid (η = 1), and we
take half the distance between the spheroid foci to be f = 0.1λ.

Up to now we have considered radiative decay rates. To
estimate radiationless decay rates, one should use general
expression (16). For a ξ-oriented dipole located on the axis
of a spheroid, the radiative decay rates can be found with
the help of expressions (16, 56, 59):(

γ

γ0

)losses

ξ,η=1

=
(
γ

γ0

)total

ξ,η=1

−
(
γ

γ0

)radiative

ξ,η=1

=
3
2

Im
(
a1

k3
0

)
+ Re

(
1 +

3
2
d1

)
−
∣∣∣∣1 +

3
2
d1

∣∣∣∣
= −2

(
Im(G10)

d
dξ
Q1(ξ)

)2

− 3
2(k0f)3

∞∑
n=1

(2n+ 1)

×
{

Im(Gn0)
(

d
dξ
Qn(ξ)

)2

+O((kf)2)

}
· (73)

In the limit ξ, ξ0 → ∞, this expression agrees with the
one found for spherical particles [15,27]. In the case of real
permittivity, the losses occurring inside a nanospheroid go
to zero, as it must be. However, in the case of nanobod-
ies of complex permittivity internal loss (73) can become
predominant in comparison with radiative loss (59). The
dependence of the radiative and non-radiatiative decay
rates of a dipole located on the axis of a spheroid on the
distance between the dipole and the spheroid surface is
shown in Figure 7. Here we consider the case of plas-
mon resonance (ξ0 = 1.0236) for a silver spheroid (Ag:
ε = −15.37 + i0.231, λ = 632.8 nm [44]) with the major
semiaxis a ≈ f = 0.1λ. The minor semiaxis of the spheroid
is b ≈ 0.02λ. Note that a plasmon resonance in this case
occurs mainly with a dipole whose dipole momentum is
oriented parallel to the major spheroid axis.

One can see from Figure 7 that in the case of ξ-oriented
dipole the radiative loss exceeds the radiationless one for
all distances ξ − ξ0 > 0.01. The situation with an η-
oriented dipole is different. In the region ξ − ξ0 < 0.1,
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the non-radiative processes dominate because of the pre-
dominance of the near-field coupling between the atomic
dipole and polaritons.

In general, the case of an atom near a spheroid occupies
an intermediate position between the spherical and the
cylindrical case. This allows us to use a nanospheroid as
an effective tool to control the radiative and radiationless
decay rates of an excited atom.

An important feature of nanospheroids is the possibil-
ity of tuning their plasmon resonances for various media
by changing their shape, i.e., by changing their b/a ratio.
On the one hand, this allows one to control spontaneous
decay processes and, on the other, makes it possible to
measure the complex permittivity of their material.

4.3 Prolate nanospheroid as a model of a needle tip
in an apertureless scanning optical microscope [46]

A prolate nanospheroid can be treated as a model of a nee-
dle tip used in a apertureless scanning microscope. On the
other hand, an excited atomic oscillator near the spheroid
can be considered as an object. In this model radiation
power can be regarded as the scanning signal. That is
why it is interesting to know the relationship between ra-
diative losses and the displacement of the atom relative
to the spheroid. For the sake of definiteness, we suppose
that the atomic dipole is oriented vertically (along the
z-axis) and is moved along the x-axis. In doing so, the
minimal distance h between the atom and the pole of
the spheroid can be varied. The geometry of such a scan-
ning microscope is shown in Figure 8.

In this case, the spheroidal coordinates of the atom are
the following functions of ∆x and h:

ξ2 =
(ξ0 + h/f)2 + (∆x/f)2 + 1

2

+

√
((ξ0 + h/f)2 + (∆x/f)2 + 1)2 − 4(ξ0 + h/f)2

2
(74)

η =
ξ0 + h/f

ξ
(75)

(2f is the distance between foci).
In their turn, the ξ- and η-components of the dipole

momentum are

dξ = dz
η
√
ξ2 − 1√
ξ2 − η2

(76)

and

dη = dz
ξ
√

1− η2√
ξ2 − η2

, (77)

respectively.
Substituting these expressions into (42), one can find

the components of the total dipole momentum, and then,

Fig. 8. Geometry of an apertureless scanning microscope with
an excited atom as an object.

by means of (18), find the radiative decay rate as a func-
tion of the displacement ∆x:(
γ

γ0

)radiative

scan

(∆x, h) =∣∣∣∣1 +G10

(
1
2

ln
(
ξ + 1
ξ − 1

)
− ξ

ξ2 − η2

)∣∣∣∣2
+ 4|G11|2

η2(1− η2)
(ξ2 − η2)2(ξ2 − 1)

· (78)

Here ξ and η are described by expressions (74, 75).
Figures 9 and 10 present relationship (78) for a silver

spheroid (Ag: ε = −15.37 + i0.231, λ = 632.8 nm [44]).
Figure 9 illustrates the resonance case (ξ0 = 1.0236), i.e.,
the case where condition (71) is satisfied, whereas Fig-
ure 10 shows the scanning signal for a silver spheroid of
slightly different shape (ξ0 = 1.02). It is seen from these
figures that one can expect a substantial enhancement of
the decay rates when the distance between tip of spheroid
and atomic oscillator is minimal. It is interesting that in
the case of small detuning (Fig. 10) the scanning signal
becomes more complicated and a substantial inhibition of
the decay rates is possible at ∆x ≈ f = 0.1λ. At this point
the atom and the spheroid have equal dipole momenta of
opposite signs. As a result, the total dipole momentum
comes close to zero, and radiation is suppressed.

The central peak can be used to determine the position
of the atom. In the neighbourhood of the scanning signal
maximum

ξ2 = ξ2
0 +

ξ2
0

ξ2
0 − 1

(
∆x

f

)2

≈ ξ2
0

η2 =
ξ2
0

ξ2
≈ 1. (79)

Considering expressions (79), the shape of the resonance
curve is governed by the resonance part of the first term
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Fig. 9. Radiated power (relative radiative losses) as a func-
tion of the dipole displacement ∆x relative to a silver spheroid
(Ag: ε = −15.37 + i0.231, λ = 632.8 nm) for various minimal
heights h. The dipole is oriented along the z-axis, the case of
plasmon resonance (ξ0 = 1.0236): (a) logarithmic scale; (b) lin-
ear scale (h = 0).

in expression (78):(
γ

γ0

)radiative

scan

(∆x, h = 0) ≈
∣∣∣∣ G10ξ

ξ2 − η2

∣∣∣∣2 ≈ ∣∣∣∣ G10ξ
3
0

ξ4 − ξ2
0

∣∣∣∣2 ·
(80)

The contribution from the second term is strongly sup-
pressed because of both the smallness of G11 and the fact
that the factor η2 − 1 tends to zero near the maximum.
Substituting expression (79) into (80), we obtain the fol-
lowing simple asymptotic expression for the scanning sig-
nal close to the maximum:(

γ

γ0

)radiative

scan

(∆x, h = 0) ≈ f2|G10|2
4 (∆x2 + (Rcurv/2)2)

(81)
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Fig. 10. Radiated power (relative radiative losses) as a func-
tion of the dipole displacement ∆x relative to a silver spheroid
(Ag: ε = −15.37 + i0.231, λ = 632.8 nm) for various minimal
heights h. The dipole is oriented along the z-axis: (a) the case
of small detuning from resonance (ξ0 = 1.02); (b) 3D view
of (a).

where Rcurv = f(ξ2
0 − 1)/ξ0 is the radius of curvature

of the nanospheroid near its vertex (tip). One can see
from the above figures that the width of the signal peak
at half maximum is approximately equal to the radius
of curvature of the nanospheroid near it vertex (tip). In
the case under consideration (Fig. 9b), the width of the
peak is about 0.044f ≈ 0.0044λ, that is, about 2.8 nm for
λ = 632.8 nm. That is why the accuracy of determina-
tion of the atomic coordinate is about 3 nm. Besides, us-
ing a more complex scanning signal processing algorithm
allowing for the drastic reduction of the decay rates at
∆x ≈ f = 0.1λ (Fig. 10a) will make it possible to deter-
mine the position of the excited atom to an even higher
precision.
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5 Frequency shift in an atom placed
near the tip of a prolate spheroid

Now let us consider frequency shifts in more detail. As
it can be seen from the expressions (56–58), these shifts
are described by double series, so that their analysis is a
rather complicated matter.

In the particular but very important case of atom on
the axis of a spheroid (η = 1), only the terms with m = 0
and 1 remain nonzero. As a result, the expressions for the
frequency shifts simplify greatly in this case:(
∆ω

γ0

)
ξ,η=1

=
3

4(k0f)3

∞∑
n=1

(2n+1)Re(Gn0)
(

d
dξ
Qn(ξ)

)2

,

(82)(
∆ω

γ0

)
η,η=1

=
(
∆ω

γ0

)
ψ,η=1

= − 3
8(k0f)3

×
∞∑
n=1

(2n+ 1)Gn1

(
d
dξ
Qn(ξ)

)2

. (83)

Another case when the expressions for the frequency shifts
admit simplification, is the one when the shape of the
spheroid is the spherical one (ξ ≈ R/f > ξ0 ≈ R0/f →
∞). In that case, we have the following respective expres-
sions for ξ (radial) orientation

(
ω − ω0

γ0

)
ξ

= −3
4
ε− 1

(k0R)3

∞∑
n=1

n(n+ 1)2

(ε+ 1)n+ 1

(
R0

R

)2n+1

(84)

and η, ψ (tangential) orientations

(
ω − ω0

γ0

)
η,ψ

= −3
8
ε− 1

(k0R)3

∞∑
n=1

n2(n+ 1)
(ε+ 1)n+ 1

(
R0

R

)2n+1

·

(85)

Naturally expressions (84, 85) coincide with the cor-
responding expressions for a dielectric nanosphere [15],
which confirms the correctness of our calculations.

In the case of highly prolate spheroid (ξ0 → 1), the
main contribution is again from the terms with m = 0
and 1, as in the case of oscillator on the axis of the
spheroid. In this case, frequency shifts are described by
the following expressions (ξ0 → 1):

(
∆ω

γ0

)
ξ

= − 3
4(k0f)3

(ε− 1)(ξ2 − 1)(ξ0 − 1)
(ξ2 − η2)

×
∞∑
n=1

(2n+ 1)

(
n(n+ 1)

(
d
dξ
Qn(ξ)Pn(η)

)2

+
2

(1 + ε)n(n+ 1)

(
d
dξ
Q1
n(ξ)P 1

n(η)
)2
)

(86)

(
∆ω

γ0

)
η

= − 3
4(k0f)3

(ε− 1)(1− η2)(ξ0 − 1)
(ξ2 − η2)

×
∞∑
n=1

(2n+ 1)

(
n(n+ 1)

(
Qn(ξ)

d
dη
Pn(η)

)2

+
2

(1 + ε)n(n+ 1)

(
Q1
n(ξ)

d
dη
P 1
n(η)

)2
)

(87)

(
∆ω

γ0

)
ψ

= − 3
2(k0f)3

(ε− 1)(ξ0 − 1)
(1 + ε)(ξ2 − 1)(1− η2)

×
∞∑
n=1

(2n+ 1)
n(n+ 1)

(
Q1
n(ξ)P 1

n(η)
)2
. (88)

In the limit η → 1, these expressions agree with expres-
sions (82, 83), taken in the limit ξ0 → 1. The most inter-
esting feature of expressions (86–88) is that the frequency
shifts tend to zero in the case of infinitely thin dielectric
needle (ξ0 = 1) and fixed atomic position (ξ = const).

In the case of ideally conducting spheroid, we have,
instead of expressions (86–88)(

∆ω

γ0

)
ξ

=
3

2(k0f)3

(ξ2 − 1)

(ξ2 − η2) ln
(
ξ0−1

2

)
×
∞∑
n=1

(2n+ 1)
(

d
dξ
Qn(ξ)Pn(η)

)2

(89)(
∆ω

γ0

)
η

=
3

2(k0f)3

(1− η2)

(ξ2 − η2) ln
(
ξ0−1

2

)
×
∞∑
n=1

(2n+ 1)
(
Qn(ξ)

d
dη
Pn(η)

)2

(90)(
∆ω

γ0

)
ψ

= − 3
2(k0f)3

(ξ0 − 1)
(ξ2 − 1)(1− η2)

×
∞∑
n=1

(2n+ 1)
n(n+ 1)

(
Q1
n(ξ)P 1

n(η)
)2
. (91)

The analysis of expressions (89–91) and (86–88) shows
that in the case of ideally conducting spheroid the fre-
quency shifts of ξ- and η-oriented oscillators are greater
than those occurring near a dielectric spheroid. Neverthe-
less, the frequency shifts tend to zero as the spheroid ta-
pers off into a needle, ξ0 → 1. The relative frequency shifts
are shown in Figures 11 and 12 as a function of the dis-
tance between the atom and the surface of the spheroid
for various spheroid shapes and dipole orientations. The
oscillator is located on the axis of the spheroid with ε = 3.

One can see from these figures that, as in the case of
decay rates, the frequency shifts for an oscillator located
near a needle (ξ0 = 1.1) is much greater than those occur-
ring in the same oscillator near a sphere (ξ0 = 10).

The dependence of the frequency shift of an atomic
dipole on its distance from the surface of a spheroid in
an almost resonant case is shown in Figure 13. The most
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Fig. 11. Relative frequency shift (ω − ω0)/γ0 as a function of
the distance of the dipole (ξ) from the surface of the spheroid
and the size ξ0 of the latter (ε = 3, the dipole is located on the
major axis of the spheroid and oriented along it).
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and the size ξ0 of the latter (ε = 3, the dipole is located on the
major axis of the spheroid and oriented perpendicular to it).

noteworthy feature is the appearance of positive values
of the shift. This corresponds to repulsion between the
atom and the spheroid under conditions considered. In an
ordinary situation, the van der Waals attraction predom-
inates, and so the frequency shift is negative. A similar
frequency shift behaviour has been previously predicted
in other cases of resonance interaction, specifically in the
case of interaction of an excited atom with the whispering
gallery modes of a dielectric microsphere [15].
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Fig. 13. Relative frequency shift of a dipole as a function
of its distance from the surface of an almost resonant silver
nanospheroid. The dipole is located on the major axis of the
spheroid axis and oriented along it.

6 Conclusion

In this paper we have shown that a dielectric or a metal-
lic prolate spheroid can substantially influence the decay
rates and frequency shifts of an atom placed near it. Us-
ing the quasistatic approach that is valid in the case of
nanobodies, we have found analytical expressions for the
decay rates and frequency shifts for any oscillator position
and orientation.

Spheroids occupy an intermediate position between the
cylinder and the sphere, and then ellipticity can be used
to effectively control the spectroscopic characteristics of
atoms placed near them. Of special importance is the case
when the shape of the spheroid matches with its permit-
tivity, in such a way that a polariton resonance occurs
at a frequency close to the atomic frequency. Herewith a
dramatic enhancement of the decay rates takes place.

The predictions of this paper apply to any surface po-
lariton resonances, such as the surface plasmon or sur-
face phonon resonances in dielectric materials (sapphire)
in the mid infrared [12], which have recently been shown
to dramatically alter the properties of excited-state atoms
(surface repulsion [47], enhancement of radiationless decay
rates [48]).

The excited atomic oscillator plus prolate
nanospheroid system has been used as a model of
an apertureless scanning microscope. We have shown
that the accuracy of determination of the position of the
excited atom is substantially better than the diameter of
the nanospheroid, and mainly limited by the radius of
curvature of the nanospheroid vertex (tip). In a typical
case, it can be of the order of 3 nm and better.

All the results obtained are valid when the spheroid
size and distance between an atom and the spheroid are
much smaller than the radiation wavelength. The actual
scope of applicability of our results can be found once com-
parison is made with the solution of the fully quantum
electrodynamic problem involving frequency-dependent
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permittivity. This problem will be considered in a forth-
coming publication.
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